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SUMMARY 

A variational  finite  element  model  for  transonic  small  disturbance 
calculations  is  described.  Different  strategy  is  adopted  in  subsonic  and 
supersonic  regions,  and  blending  elements  are  introduced  between  different 
regions. In  the  supersonic  region,  no  upstream  effect  is  allowed. If rec- 
tangular  elements  with  linear  shape  functions  are  us.ed,  the  model  is  similar 
to  Murman's  finite  difference  operators.  Higher  order  shape  functions,  non- 
rectangular  elements,  and  discontinuous  approximation  of  shock  waves  are  also 
discussed. 

INTRODUCTION 

The  plane,steady,  inviscid  flow  past a  smooth  configuration  near  sonic 
speed  can  be  described  by a  perturbation  velocity  potential c$ satisfying 
the  transonic  small  disturbance  equation (TSDE) 

(K-Ox) OXX + @YY = o  

where K is a sim4larity  parameter.  This  equation  is  nonlinear  and of mixed 
hyperbolic-elliptic  type.  Its  weak  solution  admits  discontinuity  in  the 
pressure, 

D 2  
<K-$ X > = - (%) 

and 

where < > and [r 1 signify  the  average  and  the  jump  across  the  shock  x (y). 
The  flow  field  solution  is  required  to  determine  the  pressure  distribution  on 
the  airfoil  (unlike  the  methods  of  singularities,or  Kernel  methods,used  for 
incompressible  flow  calculations).  Recently,  finite  difference  solutions 
have  been  obtained  with  marked  success  (refs. 1 - 4 ) .  

D 

In this  paper,  the  feasibility  of  applying  a  finite  element  approach  to 
transonic  flow  problems  will  be  studied. A finite  element  method  should  handle 
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t h e  same problems  tha t   f in i te   d i f fe rences   d id ,   namely ,   the   change   of   the   type  
of   the   equat ion  i n  t h e  domain o f   i n t e r e s t   w i t h  a d i scon t inuous   so lu t ion  
s a t i s f y i n g   p r e s c r i b e d  jump c o n d i t i o n s .   I n   p a s s i n g ,   t h e   p o t e n t i a l   s o l u t i o n  i s  
comple t e ly   r eve r s ib l e  (no  entropy  changes),   and  an  expansion  shock must be 
excluded  (using  an a r t i f i c i a l  v i s c o s i t y   o r  a s h o c k   f i t t i n g   p r o c e d u r e ) .  Hope- 
fu l ly ,   compl ica ted   boundary   condi t ions  w i l l  b e   h a n d l e d   e a s i l y   i n   t h e   p h y s i c a l  
space ,   and   the   use   o f   h igher   o rder   shape   func t ions  w i l l  b e   e f f i c i e n t .  

FINITE ELEMENTS - BACKGROUND 

E l l i p t i c  Problems 

Consider  the  classical   boundary  value  problem, 

where $ is known on aR; K > 0. The a s s o c i a t e d   f u n c t i o n a l  i s  

I ( $ )  = f l K $ x 2  + ($y2 + 2f$ dxdy 
R 

The f i r s t   v a r i a t i o n  i s  set equa l   t o   ze ro  
1 1  

and  the   second  var ia t ion  i s  p o s i t i v e   d e f i n i t e .  

I f   l i n e a r   s h a p e   f u n c t i o n s  on t r i angu la r   e l emen t s  a re  used ,   t he   a lgeb ra i c  
e q u a t i o n s   f o r   t h e   n o d a l   v a l u e s   a r e   i d e n t i c a l   t o   t h o s e   o b t a i n e d  by applying a 
cen te red   d i f f e rence  scheme. 

A grad ien t  method f o r   s o l v i n g   t h i s  problem i s  

& $ = $  - ( $  = -  n+l n 
P 61 ($3 

where n i n d i c a t e s   t h e   i t e r a t i o n  and t h e  optimum p may be o b t a i n e d   i n  terms 
of  the  Residual  and  the  Hessian.  

Many n o n l i n e a r   e l l i p t i c   p r o b l e m s  a re  s o l v e d   i t e r a t i v e l y  by c a s t i n g  them 
in   Po i s son’ s   fo rm,   where   non l inea r i ty   ac t s  as  a dr iv ing   force   ( incompress ib le  
sources)  = 

6@xx 
+ 

and  where R i s  the  Residual   and w is a r e l axa t ion   pa rame te r .  

Argyr i s   ( r e f .  5 )  ca lcu la ted   compress ib le   subsonic   f lows  by the   Galerk in  
I 

method  and ob ta ined   impress ive   r e su l t s   w i th in  a few i t e r a t i o n s .   S i m i l a r  

1372 
1 



applications  were  reported  by  Gelder  (ref. 6 ) ,  Norrie  and  DeVries  (ref. 7), 
Periaux (ref. 8) , and  Chan  and  Brashears  (ref. 9 ) .  

Hyperbolic  Problems 

Finite  element  methods  were  also  developed  for  approximate  solutions  of 
initial  value  problems.  Both  variational  and  weighted  Residual  methods  were 
used  (see  refs. 10 - 16). Most  of  these  investigators  used  either  finite 
element  in  space  with  finite  difference  in  time,  a  quasi-variational  principle, 
or  a  convolution'  bilinear  form. A variational  formulation  for  initial  value 
problems  is  not  possible  in  the  classical  context  of  the  calculus of varia- 
tions.  Consider  the  simple  linear  wave  equation 

where @(x = 0 )  and @J~(X = 0) are  given  as  initial  conditions  and  x  is 
the  time-like  coordinate.  Application  of  Hamilton's  principle  requires  know- 
ledge  of  the  conditions  at  the  beginning  and  end  of a time  interval  and  does 
not  apply  here.  This  is  difficult  because  we  persist  in  employing  boundary 
value  techniques  to  solve  an  initial  value  problem. 

Contrary  to  the  conventional  shooting  method  (an  initial  value  technique), 
which  employs a marching  (step-by-step)  scheme  to  solve a boundary  value 
problem,  here  we  will  solve  the  initial  value  problem  by  a  formal  application 
of Hamilton's  principle.  The  success  of  the  shooting  methods  depends  on  the 
assumption  that a  variation  in  the  initial  slope  has  a  one-to-one  correspond- 
ence  with a  variation  in  the-  end  position;  hence,  the  problem  can  be  solved 
iteratively.  At  each  iteration,  only an initial  value  problem  is  solved.  For 
linear  problems,  .iterations  may  not  be  needed.  The  reverse of this  process  is 
valid  if  the  same  assumption  holds,  namely,  initial  value  problems  can  be 
solved  iteratively,  with  each  iteration  consisting of a boundary  value  problem. 
Again,  iterations  may  not  be  needed  for  linear  problems. 

So, if we  assume  that  the  end  value @(x = X) is  known  instead of the 
initial  slope @,(x = 0), the  associated  functional  (po'tential  and  kinetic 
energy)  would  be 

x 1  

0 0  

which  can  be  discretized  and  expressed  as  a  sum  over  finite  elements. A basic 
requirement  for  application of Hamilton's  principle  is  that we not  vary  the 
extreme  positions  of  the  physical  system.  The  missing  equation  (the  variation 
with  respect  to  the  end  position)'is  replaced  by an equation  prescribing  the 
variation  with  respect  to  the  initial  slope  (see  fig. 1). 

Note  that  the  second  variation  is  not  positive  (stationary  but  not 
extremum),  and  there  may  be  no  advantage  over  weighted  Residual  methods  with 
a  sensible  choice  of  suitable  weighting  functions.  We  note  also.  that 
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arrangement  of  the  elements  is not completely  arbitrary,  and  sometimes 
the  element  size  is  restricted  by  stability  requirements.  For  example,  if we 
use linear  shape  functions on triangular  elements,  the  algebraic  equations 
for  the  nodal  values  are  identical  to  those  obtained  by  explicit  centered 
difference  schemes.  These  requirements  arise  because  a  hyperbolic  system  has 
characteristics  (or  preferred  directions  of  propagation)  and  by  just  minimizing 
the  energy,  we  have  not  taken  these  features  into  account.  Implicit 
(unconditionally  stable)  schemes  will  be  discussed  below. 

For  many  nonlinear  hyperbolic  equations,  the  following  iterative 
procedure  can  be  used: 

where a is  determined to guarantee  convergence  of  iterations  (the  approximate 
domain  of  dependence  contains  the  exact  one). 

TRANSONIC FLOWS 

Consider  the  functional 

Perturbing @ in  any  direction V ( r l  is an  admissible  function) 

Vanishing  of  the  first  variation  gives 

Applying  Green's  theorem,  equation (3)  becomes 

Note  that  the  second  variation  is  not  always  positive. 
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Iterative  Procedures 

For  a nonlinear  problem, we need a linearization  procedure  and a 
discretization  technique. In general,  they  do  not  commute. 

If we  start  by  discretizing  the  integral  expression,  minimization  will 
lead  to a nonlinear  system  of  algebraic  equations to be  solved  iteratively 
(e.g. , Newton's  method). On  the  other  hand,  consider  the  sequence  of 
functionals 

At each  iteration,  only a linear  system  of  equations  will  be  solved. 

Discretization  Procedures 

The  finite  element  method  has  been  used  to  solve  efficiently  subsonic 
flow  problems,with  complex  geometries  employing  nonrectangular  elements, 
with a better  approximation  of  the  boundary  conditions  than  finite  differences. 
Although  the  matrix  for  the  nodal  values  will  not  have  the  same  regular 
structure  as  in  finite  differences,  the  number  of  unknowns  is  usually  less 
(for  higher  order  elements),  and  the  matrix  inversion  procedure  is  different 
(banded  Gaussian  Elimination). 

For  transonic  small  disturbance  theory,  the  streamlines  are  almost 
parallel  to  the x-axis, and  the  body  boundary  condition  can  be  applied  at 
y = 0 .  Moreover,  in  the  supersonic  bubble, x  is the  time-like  coordinate, 
and  the  nodes  may  be  located  along x = constant  lines.  Finite  differences 
suit  the  problem  very  well.  The  small  disturbance  simplifications  eliminate 
the  advantages  of  finite  elements.  The  situation  will  be  different,  however, 
if  the  full  potential  equation is considered  where  the  flow  direction  is 
unknown  and  if  the  exact  boundary  conditions  are  applied  at  the  surface of the 
body. 

Nevertheless,  we  will  consider a simple  example  and  use  rectangular 
elements  to  study  the  feasibility of using a  finite  element  approach to a 
mixed  type  equation.  As a matter  of  fact,  efficient  finite  difference  schemes 
for  elliptic  and  parabolic  equations are constructed  this  way  (see  refs. 17 - 
19). 

Semi-Discretization 

Let 

where m  is the  number  of  strips  in  the y-direction.  The  functional I 
becomes n 
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I n (41) = fKij {'X.. . dx + 
m m  

s"' Mi dx  dx 

dX.  dX 
2 i dx 

i=l j=1 1 J  x1 x1 j 

where 

and 

The  kinetic  and  potential  energies  are 

The  Euler-Lagrange  equation  reads 

= 0 (i.e., - (MX) + Kx = 0) 
. .  

where  M  and  K  are  the  mass  and  the  stiffness  matrices.  Or,  in  the 
canonical form, 

M x = P  P = + K X  

where  X.(x)  must  satisfy  the  essential  boundary  conditions.  For  local 
hyperbollc  regions,  the  end  value  X.(x = x ) will  be  replaced  by an initial 

condition, -- (x = x ). 

1 

dXi 
dx 1 

1 2 

Full-Discretization 

Instead  of  solving a  system  of  ordinary  differential  equations  along  lines, 
we  will  consider  different  discretization  procedures  also  in  the  x-direction. 

Finite  Element  in  Space,  Finite  Difference  in  Time. - - - If  linear  hat 
functions  in y are  used, M will  be a  triadiagonal  matrix 

and K  will  read 

These  two  matrices  will  be  modified  by  introduction of the  boundary  conditions. 

In  the  x-direction,  centered  differences  in  the  subsonic  segment  will  give 
star A ,  as  shown  in  figure 2, while  backward  differences in the  supersonic 
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segment w i l l  g ive  star B. A t  t he   pa rabo l i c   po in t  P, Kg i s  set e q u a l   t o   z e r o .  
A t  the   shock   po in t  S t h e   l o c a l l y  normal   shock  re la t ion <K-$ > = 0 provides  
$ downstream  of the  shock  and i s  used as a de r iva t ive   boundary   cond i t ion   fo r  
tffe rest of t h e  unknowns o n   t h e   l i n e .  

X 

F i n i t e  Element i n  Space  and Time .  - I f   l i n e a r   h a t   f u n c t i o n s   i n   b o t h  y 
and x are used,  both stars A and B w i l l  be   t he  same as i n   f i g u r e  3 .  

Higher  Order  Shape  Functions:  Linear H a t  F u n c t i o n s   i n  y and Hermite 
Cubics i n   x .  - The cubic  polynomial  on 0 5 x 5 Ax , which  takes  on  the  four 
p re sc r ibed   va lues  $o ,  9xo, $1, and $ Y is  

., . _ _  ” 

X 1  

with 

3 
= (e - 28 = e)Ax 

2 
H 1 O  

3 
= (e - e )AX 

2 
H1l 

X (e = ”> Ax 

In   the   subsonic   reg ion ,   the   cont r ibu t ion   of   the   ne ighbor ing   e lement  w i l l  be  
included  through  the  assembly of  t he   e l emen ta l   exp res s ion   i n to   t he   g loba l  
s y s t e m  ( s e e   f i g u r e  4 ) .  In   t he   supe r son ic   r eg ion ,   t he   s t a t iona ry   va lue   w i th  
respec t   to   @x(0)   and  @ (Ax) ,. assuming $(O)  and  $(Ax) are known, w i l l  g ive  
two a lgebra ic   equa t ions  tgat  w i l l  be   u sed   t o   so lve   fo r  @(Ax)  and @,(Ax) 
(accord ing   to   the   inverse   shoot ing  method d e s c r i b e d   e a r l i e r ) ,  namely, 

o r  

Note, no ups t ream  e f fec t  is  a l lowed   i n   t he   supe r son ic   r eg ion .  

Nonrectangular Elements. - A l l  the   p rev ious   approximates  were s p e c i a l  
cases of tensor   p roducts .  To r e l a x   t h i s   r e s t r i c t i o n ,   c o n s i d e r  

$ = C $ i N i ( ~ , ~ )  (21)  
i 



where Ni are t h e   g l o b a l   s h a p e   f u n c t i o n s .   ( F o r   e x a m p l e ,   t h e   i s o p a r a m e t r i c  
e lement   wi th   four   nodes ,   where  4, $X, and @ are g i v e n  a t  each  node,  curved 
boundar ies  are a l l o w e d   w i t h   t h e   r e s t r i c t i o n   t h x t   t h e   n o d e s   i n   t h e   s u p e r s o n i c  
r e g i o n  l i e  04 x = c o n s t a n t   l i n e s . )  

Element Equat ions  and  Assembly  Procedures  

F o r   s i m p l i c i t y ,   c o n s i d e r  a b i l i n e a r   e l e m e n t   w i t h   f o u r   n o d e s :  

@e = a + bx + cy + dxy 

The c o e f f i c i e n t s  a ,  b ,  c ,  and d are g i v e n   i n  terms o f   t h e   f o u r   n o d a l   v a l u e s .  
( I f   t h e   e l e m e n t s  were r e c t a n g u l a r ,   t h i s  case w o u l d   r e d u c e   t o   t h e   t e n s o r   p r o d u c t  
of l i n e a r   h a t   f u n c t i o n s   i n  x and y .) I f  w e  c o n s i d e r   t h e   e l e m e n t   e q u a t i o n s  
r a t h e r   t h a n   t h e   n o d a l   e q u a t i o n s ,   t h e   u s u a l   f i n i t e   e l e m e n t   a s s e m b l y   p r o c e d u r e  
i n   t h e   s u p e r s o n i c   r e g i o n   m u s t   b e   m o d i f i e d   a c c o r d i n g   t o   t h e   i n v e r s e   s h o o t i n g  
method, as shown i n   f i g u r e  5. 

The t r a n s i t i o n   b e t w e e n   t h e   e l l i p t i c   a n d   h y p e r b o l i c   p a r t s  of t h e   f l o w  is  
ach ieved   by   i n t roduc ing   b l end ing   e l emen t s   be tween   d i f f e ren t   r eg ions .  Two such  
e lements  are  u s e d :   o n e   f o r   t h e   s o n i c   l i n e ;   o n e   f o r   s h o c k   w a v e s .  

Sonic  Elements 

F o r   s o n i c   e l e m e n t s ,   t h e   a v e r a g e   o f  (K-$Z) i s  set  to   ze ro .   These  
e l e m e n t s   a c t  as a "buf fe r   zone ' '   be tween   subson ic   and   supe r son ic   e l emen t s .  We 
can show t h a t   t h e   s y s t e m   m a t r i x  w i l l  b e   p o s i t i v e   d e f i n i t e   i f   t h e   a b o v e  
a s s e m b l i n g   s t r a t e g y  i s  adop ted   and   i f   t he   son ic   e l emen t  is  inc luded .  

Shock  Elements 

I n   t r a n s o n i c  small d i s t u r b a n c e   c a l c u l a t i o n s   b y   f i n i t e   d i f f e r e n c e s ,   s h o c k s  
are  e i t h e r   c a p t u r e d   ( u s i n g   a r t i f i c i a l   v i s c o s i t y )   o r   f i t t e d   ( a s  a d i s c o n t i n u i t y ) .  
The a r t i f i c i a l   v i s c o s i t y  term r e q u i r e d   t o   s m o o t h   o u t   t h e   d i s c o n t i n u i t y  i s  
u s u a l l y   o f   t h e  same o r d e r  as  t h e  mesh s i z e   ( b e c a u s e   o f   l a r g e ,   b u t   f i n i t e ,  
g r a d i e n t s   o f   t h e   s o l u t i o n   i n   t h e   s h o c k   r e g i o n ,   e v e n   i f   h i g h e r   o r d e r   s c h e m e s  a re  
u s e d ) .  The same comment h o l d s   f o r   f i n i t e   e l e m e n t s .  On t h e   o t h e r   h a n d ,   t h e  
d i s c o n t i n u o u s   f i n i t e   e l e m e n t   a p p r o x i m a t i o n   o f   s h o c k  waves p r o v e d   t o   b e   e f f i c i e n t  
i n   n o n l i n e a r   e l a s t i c i t y   ( s e e   r e f .  20) .  Here w e  w i l l  d e s c r i b e  a f i n i t e   e l e m e n t  
a n a l o g u e   f o r   t h e   s h o c k   f i t t i n g   p r o c e d u r e   u s e d  by Hafez  and  Cheng  (ref.  21). 

Consider  a shock   e lement ,  as shown i n   f i g u r e  6 .  The  Rankine-Hugoniot 
r e l a t i o n s   u n d e r   t h e   t r a n s o n i c  small d i s t u r b a n c e   a s s u m p t i o n s  are  g i v e n   i n  
equat ions   (13)   and  (14). 

The f i r s t   r e l a t i o n   c a n   b e   d e r i v e d   a c t u a l l y   f r o m   t h e  weak s o l u t i o n   a d -  
mi t ted   by  TSDE, w h i l e   t h e   s e c o n d  i s  c o n s i s t e n t   w i t h   t h e   i r r o t a t i o n a l i t y  
cond i t ion ,   wh ich  is  e q u i v a l e n t   t o  [@I] = 0 . The e q u a t i o n   f o r   t h e   n o d a l   v a l u e  
a t  i - 1 w i l l  n o t   b e   a f f e c t e d .  The e q u a t i o n  a t  i , however, w i l l  b e  
d i f f e r e n t   s i n c e   o n l y   t h e   c o n t r i b u t i o n   o f   s e g m e n t  I1 downstream  of  the  shock 
w i l l  be   cons idered .  To t h e   f i r s t   o r d e r   o f   a c c u r a c y ,   k n o w i n g  @i-l and  @i-2 3 
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w e  know the  condi t ion  upstream  of   the  shock.  can  be  determined  according 
t o   r e l a t i o n   ( 2 )  and i n  terms of $ . The r ig   t hand   s ide   (dx /dy )2  may be 
evaluated  from a p r e v i o u s   i t e r a t i o n  as the  average  of   the  s lope  of   the  shock 
in   t he   ad j acen t   e l emen t s .  I f  t h i s  term is  neg lec t ed ,   t he  scheme w i l l  reduce 
t o   t h e   s h o c k   p o i n t   o p e r a t o r ,  as d iscussed  earlier. The c o m p a t i b i l i t y   r e l a t i o n  
( 3 ’ )  is  s a t i s f i e d  by u s i n g   l i n e a r   s h a p e   f u n c t i o n s   i n   u p s t r e a m  and  downstream 
segmen t s .   Thus ,   ( i n   f i n i t e   d i f f e rence   ca l cu la t ions )   t he   i n t roduc t ion   o f  
shock   r e l a t ions  w i l l  n o t  make the  system matrix s i n g u l a r   o r   d i s t u r b   t h e  con- 
vergence   o f   i t e ra t ions .  

3 
i 

As a n   a l t e r n a t i v e   a p p r o a c h ,   i n s t e a d  of a l t e r i n g   t h e   n o d a l   e q u a t i o n  a t  t h e  
shock  point   to   admit  the jump i n  9, between i and i-1, accord ing   t o  
equat ion (l), we may u s e   t h e   d i v e r g e n c e   t h e o r e m   t o   o b t a i n   a n   i n t e g r a l   r e l a t i o n  
as a conserva t ion  of mass over  the element. The e lenent   equa t ion  will read  

B i l i n e a r   s h a p e   f u n c t i o n s   i n  I t h r u  I V  ( f ig .  6 )  may be  used  with a jump i n  $x 
a c r o s s   t h e   s h o c k .   S i m i l a r l y ,   t h e   i r r o t a t i o n i l i t y   c o n d i t i o n   ( e x i s t e n c e  of 
po ten t i a l )   imp l i e s   ze ro   vo r t i c i ty   ove r   each   e l emen t   and ,  by Stokes  theorem,  zero 
c i r c u l a t i o n .  namely 

where 

f f V  x G-ndA = 4” V-ds = 0 

So,  as an   a l t e rna t ive   approach ,   r e l a t ions   (2 )  and  (3) are replaced by 
re la t ions   (22)   and   (23) .  

REMARKS AND COMMENTS 

Mixed Var i a t iona l   P r inc ip l e s  

Note that   h igher   order   shape  funct ions,   namely,  Hemite cubics ,   l ead  
to   equat ions   (20)   and   (20’ )   for  (9 and @x a t  the  nodes.  The r e s u l t i n g  
a lgebra ic   e -qua t ions   can   be   cons idered  as f l n i t e   d i f f e r e n c e   a p p r o x i m a t i o n s   o f  
two d i f f e r e n t i a l   e q u a t i o n s :   t h e   f i r s t  is t h e  TSDE (l), and the  second is  t h e  
x -de r iva t ive  of t h e  TSDE. Ins tead ,   the   p roblem  can   be   formula ted   in  terms of 
two unknown func t ions  (9 and u , where (9 is  governed  by  the TSDE and u 
is governed by a c o m p a t a b i l i t y   r e l a t i o n  u = $x. A mixed v a r i a t i o n a l   p r i n c i p l e  
( i n  terms of (9 and u ), t oge the r   w i th  a dua l  i terative p rocedure   fo r  TSDE, 
is s t u d i e d   i n  a separate   paper   where  the merits and t h e   e f f i c i e n c y   o f   t h e  new 
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method is assessed. 

Weighted  Residual  Methods 

Chan  and  Brashears  (ref. 9) used  least  squares  to  solve  TSDE.  Straight- 
forward  application of the  method  fails  (the  solution  diverges), so results 
can  be  obtained  by  changing  the  system  matrix.  The  element  matrices  are 
constructed in the  usual  manner.  Before  assembling  the  element  matrices  into 
the  system  matrix,  the  rows  corresponding  to  the  nodes  along  the  upstream  side 
of  any  element  in  the  supersonic  zone are zeroed  out;  hence,  no  upstream  effect 
is allowed  there.  Applying a  similar  procedure  using  the  Galerkin  method  and 
cubic  elements in the  x-direction  gives 

Note  that  equations ( 2 4 )  and ( 2 4 ' )  differ  from  equations ( 2 0 )  and ( 2 0 ' )  since 
different  weighting  functions are used. 

Type-Insensitive  Methods 

In  our  method,  a  different  strategy  is  adopted  in  subsonic  and  supersonic 
regions. A unified,  type-insensitve  method  may  be  simpler,  but  not  efficient, 
since  different  requirements  in  each  region  must  be  satisifTed  simultaneously. 

To  obtain  such a  procedure,  the  steady  problem  is  embedded  in  a  higher 
dimensional  space,  where  the  problem  is  more  amenable  for  analysis.  The  extra 
dimension  may  have  a  physical  meaning,as  in  the  unsteady  (time-dependent) 
method  or  may  be  just a  mathematical  trick,like  the  use  of complex character- 
istics  or  any  parameter  as  in  the  method  of  parametric  differentiation.  Also, 
extra  dependent  variables  may  be  used, as  in  the  mixed  variational  principle. 
The  usefulness  of  these  imbedding  techniques  depends  on  how  fast  the  limit . 

solution  will  be  obtained.  As  an  example  of  a  unified  procedure,  consider  the 
TSDE  in  the  form  of a system  of  first  order  equations, 

K u   = v  = f  
R x  Y 

KR = K-u 

u - v   = g  
Y X 

or 
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For cases where KE w a s  a l i n e a r   f u n c t i o n  of y , F r i e d r i c h s   ( r e f .  2 2 )  
and Chu ( r e f .  2 3 )  found a t r ans fo rma t ion   t ha t   pu t   t h i s   sys t em  in to  a p o s i t i v e  
symmetric form. A s  shown by L e s a i n t   ( r e f .  2 4 )  and  reported by Levanthal  and 
Aziz   ( re f .  25)', t h e   f i n i t e   e l e m e n t  method can   be   app l i ed   success fu l ly   u s ing  
th i s   t r ans fo rma t ion .  In general,  however,  such a t ransformat ion  may no t  exist. 
Never the less ,   i f   the   p roblem is  considered as the   asymptot ' c  l i m i t  of a n  un- 

s teady  problem,  where. the  vector  (i) is rep laced  by (" 0 ') B tlt , t h e   s i t u a t i o n  is 
d i f f e r e n t .  The modified  system is  symmetric and  hyperbol ic .   Unl ike  ' the  
equ i l ib r ium  equa t ions ,   fo r  symmetric hype rbo l i c   equa t ions   pos i t i v i ty   cou ld   a lways  
b e   a t t a i n e d  by a s imple  t ransformation,  as shown by  Fr iedr ichs   ( re f .  22). For 
such a modified  system, no spec ia l   t r ea tmen t   fo r   subson ic  and  supersonic 
reg ions  is  needed. 

However, b a s e d   o n   t h e   f i n i t e   d i f f e r e n c e   c a l c u l a t i o n s  of t he   Eu le r  
equat ions ,   where   cen tered   d i f fe rences  are used  everywhere i n   s p a c e ,   t h i s  
' ' i t e ra t ive"   p rocedure  may be slow. On the   o ther   hand ,  i t  seems t h a t   e f f i c i e n t  
a p p l i c a t i o n s  of f i n i t e   e l e m e n t   m e t h o d s   t o   t h e   f u l l   p o t e n t i a l   e q u a t i o n  may 
r equ i r e   such  imbedding  techniques  (art if icial   t ime-dependent and v i s c o s i t y  
terms) . 

CONCLUSIONS 

Appl ica t ions  of a f in i t e   e l emen t   app roach   t o   t r anson ic   f l ow  p rob lems   have  
been  discussed. Only small d i s tu rbance   equa t ions   w i th   s t r eaml ines   a lmos t  
para l le l  to   the  x-axis   (hence,   the   nodes are  loca ted   a long  x = c o n s t a n t   l i n e s  
in   the  supersonic   region)   have  been  considered.   Current ly ,   computat ions of a 
s i m p l e  numerical  example are  underway.  Extension of t h i s   a p p r o a c h   t o   t h e   f u l l  
po ten t i a l   equa t ion  i s  p o s s i b l e  as long as t h e   d i r e c t i o n  of t h e   f l o w   i n  t h e  
supersonic   region i s  almost known a p r i o r i .  
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L HYPERBOLIC 

(a) Character  of equations. 

BOUNDARY 
VALUE  PROBLEM 

2 

SHOOT1 NG 
METHODS 

(b) Solution methods. 

I N I T I A L  
VALUE  PROBLEM 

Figure 1.- Mixed  flow problems. 
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Figure 2.- Element  for  calculations  using  finite  element 
in  space,  finite  difference  in time. 
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Figure  3 . -  E l e m e n t s   f o r   c a l c u l a t i o n s   u s i n g   f i n i t e   e l e m e n t   i n   s p a c e  
and  time. 

SUBSON IC SUPERSONIC 

Figure  4 . -  F i n i t e   e l e m e n t   c a l c u l a t i o n s   u s i n g   h i g h e r   o r d e r   s h a p e   f u n c t i o n s .  
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Figure  5.- F in i te   e lement   assembly   modi f ied   accord ing   to   the   inverse  
shooting  method. 

F igure  6 . -  Shock  element i n   f i n i t e   e l e m e n t  scheme. 
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